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Abstract The total correlations in a bipartite quantum state are well quantified by the quan-
tum mutual information, the amount of which is not necessarily fully extractable by local
measurements. The observable correlations are the maximal correlations that can be ex-
tracted via local measurements, and have an intuitive interpretation as a measure of classical
correlations. We evaluate the observable correlations for generic two-qubit states and obtain
analytical expressions in some particular cases. The intricate and subtle relationships among
the total, quantum and classical correlations are illustrated in terms of observable correla-
tions. In the course, we also disprove an intuitive conjecture of Lindblad which states that
the classical correlations account for at least half of the total correlations, or equivalently,
correlations are more classical than quantum.

Keywords Quantum mutual information · Von Neumann measurement · Observable
correlations · Classical correlations · Lindblad conjecture

1 Introduction

Correlations are a recurring theme in science, in particular, in statistics and quantum physics.
In the classical scenario, correlations are usually characterized by covariance matrices, var-
ious correlation coefficients [7], and entropic quantities such as the Shannon mutual infor-
mation [6, 23].

In the quantum scenario, correlations gain a new dimension due to entanglement and
non-commutativity [8, 18, 21]. The so-called quantum correlations serve as a valuable re-
source for various computation and communications tasks [18], and one is naturally led to
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inquire the relationships between classical and quantum correlations. Quantum correlations
are usually studied in the entanglement/separability paradigm first formalized by Werner
[26]. This framework has been extensively developed in the last decade in connection with
quantum information and quantum computation [13, 27].

In this article, pursuing the original ideas of Everett and Lindblad [9, 15, 17], and putting
them into the context of modern quantum information theory, we will study correlations
(both classical and quantum) from a measurement perspective. Our main results are the
analytic formulas for the observable correlations of some two-qubit states. As an application,
we disprove an intuitive conjecture of Lindblad which states roughly that correlations are
more classical than quantum [17].

The central characters here will be quantum states, which are mathematically represented
by non-negative operators with unity trace (i.e., density operators), and von Neumann mea-
surements, which are represented by complete sets of orthogonal one-dimensional projec-
tions (resolution of the identity) [20]. Consider a bipartite quantum state ρ shared by parties
a and b with marginal states ρa = trbρ,ρb = traρ (partial trace), one is interested in how
many correlations it can encode. The correlations are often classified into three categories:
total, quantum and classical, and a basic issue in quantum information theory is to quantify
them.

For the total correlations, it is well quantified by the quantum mutual information [1–3,
10, 12, 14, 15, 19, 22, 24]

I(ρ) = S(ρa) + S(ρb) − S(ρ)

where S(ρ) = −trρlogρ is the von Neumann entropy (the logarithm is understood in base 2
in this article) [24, 25]. Recently, Groisman et al. [10] and Schumacher and Westmoreland
[22] have presented very appealing and significant arguments for regarding the quantum
mutual information as a measure of total correlations.

One naturally wants to inquire, among the total correlations I(ρ), how many can be
regarded as classical, and how many can be regarded as quantum. Of course, one cannot
expect a unique solution for such a problem, and there are several approaches to this issue,
such as that based on entanglement [4, 13, 27], on quantum communications [12], and on
quantum discord [19].

Here we will pursue the approach based on local quantum measurements, which origi-
nated from the earlier idea and work of Everett and Lindlad [9, 15], and is further inves-
tigated by Hall et al. [11]. It is truly remarkable that, well before the emergence of quan-
tum information theory, Everett initiated an informational approach to quantum mechanics
as early as 1957, in which the Shannon information theory and the Schmidt representa-
tion play a basic role, and Lindblad studied extensively the relationships between quantum
measurement and information, in particular the relationships between the quantum mutual
information and its local measurement realization [15–17].

Note that the quantum mutual information I(ρ) is a theoretical quantity independent of
measurements, and a natural question arises: How many correlations can be extracted from ρ

if both parties a and b perform only local measurements? By a measurement here we mean
the von Neumann type (complete measurement consisting of orthogonal one-dimensional
projections).

Let {P a
j } and {P b

k } be local measurements pertinent to parties a and b, respectively, then
after the measurement, the state ρ changes to

P (ρ) =
∑

jk

P a
j ⊗ P b

k ρP a
j ⊗ P b

k .
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This final state is essentially a quantum formalism of the classical bivariate probability dis-
tribution p = {pjk} with

pjk = trP a
j ⊗ P b

k ρP a
j ⊗ P b

k .

Indeed (noting that P a
j and P b

k are one-dimensional projections), we have

P (ρ) =
∑

jk

pjkP
a
j ⊗ P b

k ,

and the total correlations in P (ρ) is

I(P (ρ)) = I (p) = H(pa) + H(pb) − H(p)

which is actually the amount of correlations obtained via the measurement P = {P a
j ⊗ P b

k }.
Here pa

j = ∑
k pjk, pb

k = ∑
j pjk , H(·) is the Shannon entropy functional, e.g., H(p) =

−∑
jk pjklogpjk , and I (p) is the classical mutual information [6, 23].

By optimizing over local measurements P , one is led to the observable correlations

C(ρ) = sup
P

I(P (ρ)).

Since this quantity is the maximally extractable correlations via local measurements, it can
be interpreted as a measure of classical correlations. This measure of correlations has been
extensively studied by Lindblad [15, 17] who, based on several intuitive observations, fur-
ther proposed the following conjecture [17]

C(ρ) ≥ 1

2
I(ρ),

which remains open until now.
To gain some intuition about the above conjecture, let us consider some extreme cases.
First, let ρ = |�〉〈�| be a pure bipartite state, then it can always be written in the Schmidt

form as [18]

|�〉 =
∑

j

√
λj |ψa

j 〉 ⊗ |ψb
j 〉.

Here {|ψa
j 〉} and {|ψb

j 〉} are orthonormal sets for parties a and b, respectively. Direct calcu-
lations yield [11]

I(ρ) = 2S, C(ρ) = S

where S = −∑
j |λj |log|λj | is the reduced von Neumann entropy, which turns out also to

be the conventional entanglement of the pure state ρ [4]. Therefore, we see that for any
pure state, the amount of its classical correlations is precisely half of the amount of total
correlations, and the other half can be regarded as quantum correlations. An interesting
and significant operational meaning of this equal distribution of correlations is proposed by
Groisman et al. [10].

Second, consider a classical bipartite state p = {pjk}, which is a classical bivariate prob-
ability distribution. We can write it in the quantum formalism as

ρ =
∑

jk

pjkP
a
j ⊗ P b

k
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where {P a
j } and {P b

k } are sets of orthogonal projections for parties a and b, respectively.
Then direct evaluation yields

C(ρ) = I(ρ) = I (p).

Thus in this case, all correlations are classical, and the quantum correlations have to vanish,
which is just what our intuition requires.

Consequently, we see that the Lindblad conjecture is true in the above two extreme cases.
For the intermediate cases, a plausible argument supporting the Lindblad conjecture is that
the intermediate states are classical mixtures of pure quantum states, and one might ex-
pect that quantum correlations decrease and classical correlations increase after this mixing
process.

It is usually difficult and even intractable to evaluate the observable correlations due to
the complicated optimization procedures involved. In this article, we derive the analytical
expressions of the observable correlations for a class of two-qubit states in Sect. 2, and use
them to illustrate various relationships among the total, quantum and classical correlations
in Sect. 3. Incidentally, we disprove the Lindblad conjecture, and show that counterexam-
ples abound. Finally, in Sect. 4, we make some further comments and discussions about the
relationships among the observable correlations, the measure of classical correlations intro-
duced by Henderson and Vedral [12], and the quantum discord introduced by Ollivier and
Zurek [19].

2 Two-Qubit States

Let

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)

be the Pauli spin matrices acting on C2. Because {1, σ1, σ2, σ3} constitutes an operator base
for the space of all operators on C2, any two-qubit state can be written as

w = 1

4

(
1 + �α�σ ⊗ 1 + 1 ⊗ �β �σ +

3∑

j,k=1

γjkσj ⊗ σk

)
.

Here 1 is the identity operator on the composite system or on the component systems, de-
pending on the context, �α = (α1, α2, α3), �β = (β1, β2, β3) ∈ R3; �σ = (σ1, σ2, σ3)

T (here T
denotes transposition) is written as a column vector with each component being the corre-
sponding Pauli operator, �α�σ = α1σ1 + α2σ2 + α3σ3, etc., and γjk are real numbers.

Our aim is to evaluate the observable correlations of the above state. But first, without
loss of generality, we will make some reduction by means of the local unitary invariance of
the observable correlations.

Any unitary matrix U ∈SU(2) can be represented as

U = s1 + i �u�σ

with s ∈ R, �u = (u1, u2, u2) ∈ R3 and s2 + u2
1 + u2

2 + u2
3 = 1. The following results can be

verified by direct calculations.
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Lemma 1 Let U = s1 + i �u�σ ∈SU(2) be a unitary matrix, and O be the matrix defined by

O =
⎛

⎝
s2 + u2

1 − u2
2 − u2

3 2(su3 + u1u2) 2(−su2 + u1u3)

2(−su3 + u1u2) s2 + u2
2 − u2

1 − u2
3 2(su1 + u2u3)

2(su2 + u1u3) 2(−su1 + u2u3) s2 + u2
3 − u2

1 − u2
2

⎞

⎠ ,

then O is an orthogonal matrix, and moreover

U †(�α�σ)U = �αO �σ , ∀�α ∈ R3.

Conversely, for any orthogonal matrix O ∈SO(3), there exists a unitary matrix U ∈ SU(2)

such that the above equation holds for any vector �α.

According to the singular value decomposition theorem [5], the matrix 
 = {γjk} can
always be written as


 = Oadiag{c1, c2, c3}Ob

with Oa = {Oa
jk} and Ob = {Ob

jk} being orthogonal matrices in SO(3). Consequently,
(Oa)T
(Ob)T = diag{c1, c2, c3}, or more explicitly,

3∑

j,k=1

γjkO
a
jmOb

nk = cmδm,n.

Now by Lemma 1, there exist unitary matrices Ua and Ub such that

U †
a (�α�σ)Ua = �αOa �σ , U

†
b ( �β �σ)Ub = �βOb �σ .

Consequently,

U †
a ⊗ U

†
b wUa ⊗ Ub = 1

4

(
1 + �a�σ ⊗ 1 + 1 ⊗ �b�σ +

3∑

j=1

cjσj ⊗ σj

)

where �a = �αOa, �b = �βOb . Therefore we have the following result.

Lemma 2 Any two-qubit state, up to local unitary equivalence, can be represented as

ρ = 1

4

(
1 + �a�σ ⊗ 1 + 1 ⊗ �b�σ +

3∑

j=1

cjσj ⊗ σj

)
. (1)

From the definition, the observable correlations is locally unitary invariant in the sense
that

C(U ⊗ V wU † ⊗ V †) = C(w)

for any U,V ∈SU(2). Therefore, without loss of any generality, we only need to evaluate
C(ρ) with ρ defined by (1).

Theorem 1 Let ρ be defined by (1), then its observable correlations are given by

C(ρ) = sup
�x,�y

I (p).
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Here the sup is over all vectors �x = (x1, x2, x3), �y = (y1, y2, y3) ∈ R3 satisfying

x2
1 + x2

2 + x2
3 = 1, y2

1 + y2
2 + y2

3 = 1,

and p = {pjk} is given by

p00 = 1

4
(1 + �a�x + �b�y + �c�x �y),

p01 = 1

4
(1 + �a�x − �b�y − �c�x �y),

p10 = 1

4
(1 − �a�x + �b�y − �c�x �y),

p11 = 1

4
(1 − �a�x − �b�y + �c�x �y)

where �c�x �y = ∑3
j=1 cjxjyj .

Since further expression of C(ρ) will involve complicated implicit transcendental equa-
tions, we will not pursue them here, and will rather consider some particular cases with
analytical solutions in order to illustrate some intrigue relations between the classical and
quantum correlations.

We first establish Theorem 1. let {�a
j = |j 〉〈j | : j = 0,1} and {�b

k = |k〉〈k| : k = 0,1} be
the local measurements for parties a and b along their respective computational bases, then
any general local von Neumann measurements can be written as

P a
j = U�a

jU
†, P b

k = V �b
kV

†

for some unitary matrices U,V ∈ SU(2). Note that any general unitary matrices U and V

can be written, up to constant phases, as

U = s1 + i �u�σ , V = t1 + i�v�σ
with s, t ∈ R, �u = (u1, u2, u3), �v = (v1, v2, v3) ∈ R3, and

s2 + u2
1 + u2

2 + u2
3 = 1, t2 + v2

1 + v2
2 + v2

3 = 1.

After the measurement P = P a ⊗ P b , the state ρ changes to

P (ρ) =
∑

jk

P a
j ⊗ P b

k ρP a
j ⊗ P b

k .

Now

(U † ⊗ V †)P (ρ)(U ⊗ V )

= (U † ⊗ V †)
∑

jk

(P a
j ⊗ P b

k )ρ(P a
j ⊗ P b

k )(U ⊗ V )

= (U † ⊗ V †)
∑

jk

(U�a
jU

† ⊗ V �b
kV

†)ρ(U�a
jU

† ⊗ V �b
kV

†)(U ⊗ V )

=
∑

jk

(�a
j ⊗ �b

k)(U
† ⊗ V †)ρ(U ⊗ V )(�a

j ⊗ �b
k).
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Due to local unitary invariance, we have

I(P (ρ)) = I(τ ) = I (p)

where

τ =
∑

jk

(�a
j ⊗ �b

k)(U
† ⊗ V †)ρ(U ⊗ V )(�a

j ⊗ �b
k)

=
∑

jk

pjk�
a
j ⊗ �b

k

with

pjk = tr(�a
j ⊗ �b

k)(U
† ⊗ V †)ρ(U ⊗ V )(�a

j ⊗ �b
k).

Thus we only need to evaluate I (p) for p = {pjk}. For this purpose and later conve-
nience, let us put

x1 = 2(−su2 + u1u3),

x2 = 2(su1 + u2u3),

x3 = s2 + u2
3 − u2

1 − u2
2

and

y1 = 2(−tv2 + v1v3),

y2 = 2(tv1 + v2v3),

y3 = t2 + v2
3 − v2

1 − v2
2 .

Then x2
1 +x2

2 +x2
3 = 1, y2

1 +y2
2 +y2

3 = 1, moreover, when U runs through the whole SU(2),
the vector (x1, x2, x3) runs through the whole sphere, and similarly for the correspondence
between V and (y1, y2, y3). Also note the relations

�a
0σ3�

a
0 = �a

0, �a
1σ3�

a
1 = −�a

1,

�a
jσk�

a
j = 0, j = 0,1; k = 1,2,

and similar relations for �b
k . Now by use of Lemma 1 and the above relations, after direct

but tedious algebraic manipulations, we obtain

p00 = 1

4
(1 + �a�x + �b�y + �c�x �y),

p01 = 1

4
(1 + �a�x − �b�y − �c�x �y),

p10 = 1

4
(1 − �a�x + �b�y − �c�x �y),

p11 = 1

4
(1 − �a�x − �b�y + �c�x �y).
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Finally,

C(ρ) = sup
P

I(P (ρ)) = sup
U,V

I (p) = sup
�x,�y

I (p)

which is the desired result.
As a consequence of Theorem 1, putting �a = �b = 0 and noting that

sup
�x,�y

�c�x �y = max{|c1|, |c2|, |c3|},

we readily obtain the following result.

Theorem 2 Let

ρ = 1

4

(
1 +

3∑

j=1

cjσj ⊗ σj

)

and c = max{|c1|, |c2|, |c3|}, then

C(ρ) = 1 − c

2
log(1 − c) + 1 + c

2
log(1 + c).

It is interesting to further consider the particular case c1 = c2 = c3 = −c. In this instance,
the state ρ turns out to be the Werner state [26]

ρ = (1 − c)
1
4

+ c|�−〉〈�−|, c ∈ [0,1]

with |�−〉 = 1√
2
(|01〉 − |10〉), and in particular, we have

C(ρ) = 1 − c

2
log(1 − c) + 1 + c

2
log(1 + c).

3 Classical vs. Quantum Correlations

Recall that the quantum mutual information I(ρ) is a measure of total correlations, while
C(ρ) can be interpreted as a measure of classical correlations. Thus we may regard the
difference

Q(ρ) = I(ρ) − C(ρ)

as a measure of quantum correlations. The natural question arises: what are the relationships
among these three correlation measures. From the discussions in the introduction, we know
that C(ρ) = Q(ρ) for any pure bipartite state, and

C(ρ) = I (p) ≥ Q(ρ) = 0

for any mixed state of the form

ρ =
∑

jk

pjkP
a
j ⊗ P b

k
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where p = {pjk} is a bivariate probability distribution, {P a
j } and {P b

k } are orthogonal one-
dimensional projections for parties a and b, respectively. This state is actually a classical
state expressed in the quantum formalism. With these observations, it is intuitive and natural
to conjecture that

C(ρ) ≥ Q(ρ),

which is actually an equivalent reformulation of the original Lindblad conjecture C(ρ) ≥
1
2 I(ρ). By Theorem 2, we can demonstrate that the Lindblad conjecture is false.

To gain an intuitive feeling of the relationships between C(ρ) and Q(ρ), consider the
state ρ in Theorem 2, which has eigenvalues

λ0 = 1

4
(1 − c1 − c2 − c3),

λ1 = 1

4
(1 − c1 + c2 + c3),

λ2 = 1

4
(1 + c1 − c2 + c3),

λ3 = 1

4
(1 + c1 + c2 − c3).

The requirements λj ∈ [0,1] put natural constraints on the coefficients cj . The marginal
states are ρa = 1/2 and ρb = 1/2. Consequently, the quantum mutual information in ρ is

I(ρ) = 2 +
3∑

j=0

λj logλj . (2)

We define the difference

D(ρ) = Q(ρ) − C(ρ) = I(ρ) − 2C(ρ)

which, by Theorem 2 and (2), can be expressed as

D(ρ) = 2 +
3∑

j=0

λj logλj − (1 − c)log(1 − c) − (1 + c)log(1 + c).

Without loss of generality, we may assume that

c = max{|c1|, |c2|, |c3|} = c3 ∈ [0,1]

is fixed, and consider D(ρ) as a function of c1 and c2. The graphs of D(ρ) versus c1 and
c2 for c = c3 = 0.2,0.4,0.6,0.8 are depicted in Fig. 1, and the corresponding regions of
(c1, c2) such that D(ρ) is positive are depicted in Fig. 2, with the black areas corresponding
to D(ρ) > 0 at which the Lindblad conjecture is violated. Thus, the classical correlations,
as measured by C(·), can be smaller, as well as larger, than the quantum correlations, as
measured by Q(·).



174 S. Luo, Q. Zhang

Fig. 1 Graphs of D(ρ) versus c1 and c2 for c = c3 = 0.2,0.4,0.6,0.8

4 Discussion

For characterizing quantum and classical correlations, there are various axiomatic and op-
erational approaches, and it seems that no single measure can capture all the intrigue and
subtle features of classical and quantum correlations. A plethora of entanglement measures
are introduced and widely studied in the last decade in the entanglement/separability par-
adigm [26], with the purpose of quantifying quantum correlations related to nonlocality
[4, 13, 27]. On the other hand, Henderson and Vedral initiated a different approach to quan-
tifying classical correlations [12], while Olliver and Zurek introduced quantum discord as a
measure of quantum correlations from the measurement perspective [19]. We now compare
the observable correlations C(ρ) with the last two measures.

Consider the quantity defined by

Ca(ρ) = sup
Pa

I(P a(ρ))

where P a(ρ) = ∑
j P a

j ⊗ 1ρP a
j ⊗ 1 and the supremum is over all one-side local measure-

ment P a = {P a
j ⊗ 1}. Let

Qa(ρ) = I(ρ) − Ca(ρ).
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Fig. 2 The black regions are the sets of (c1, c2) such that D(ρ) > 0, the grey regions correspond to D(ρ) < 0

Then Ca(ρ) is closely related to a measure of classical correlations introduced by Henderson
and Vedral [12] (the difference lies in that the latter allows general local measurements for
party a), and Qa(ρ) turns out to be the (minimum) quantum discord introduced by Ollivier
and Zurek [19].

For any local von Neumann measurements P a = {P a
j } and P b = {P b

k }, since the state

P (ρ) =
∑

jk

P a
j ⊗ P b

k ρP a
j ⊗ P b

k

can be regarded as the result of performing the local measurement P b = {P b
k } on the state

P a(ρ) = ∑
j P a

j ⊗ 1ρP a
j ⊗ 1, by the monotonicity of quantum relative entropy (which im-

plies the monotonicity of quantum mutual information under local measurements) [18, 24],
we have

I(P a(ρ)) ≥ I(P (ρ)).

Consequently, by taking supremum of both sides, we obtain

Ca(ρ) ≥ C(ρ)
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and thus

Qa(ρ) ≤ Q(ρ).

In particular, consider the state

ρ =
∑

j

pj |j〉〈j | ⊗ ρb
j

where {|j〉} is an orthonormal base for party a. Then direct evaluation leads to Ca(ρ) = I(ρ)

and Qa(ρ) = 0, that is, the quantum discord views the above state as a “classical" state
without any quantum correlations. However, unless the family of operators {ρb

j } commute,
it is impossible to identify ρ as a bivariate classical probability distribution. The above state
is actually a classical-quantum hybrid. From the viewpoint of correlations between the two
parties, it is classical only in party a, and in general is quantum in party b, and there is no
a priori reason to regard the overall correlations as classical. It is still a quantum object.
In this sense, we say that the quantum discord underestimates quantum correlations since it
fails to detect the quantum characteristics in such a state. Consequently, the measure Ca(ρ)

overestimates the classical correlations. Another property of Ca(ρ) and Qa(ρ) is that they
are in general not symmetric with respect to the interchange of the two parties. With these
observations, we may think of the observable correlations C(ρ) as a more natural measure of
classical correlations than Ca(ρ), and Q(ρ) a more natural measure of quantum correlations
than Qa(ρ).

Finally, it should be remarked that in modern quantum information theory, a measure-
ment is most generally represented by a POVM (positive-operator valued measure), and it
is naturally and important to consider the observable correlations in such a more general
setting (i.e., using POVMs rather than von Neumann measurements in the definition). This
is a more difficult issue than the study of the accessible information for quantum ensembles.
Since there have been seldom analytical results for the later issue in the last 40 years, we
cannot hope there will be many analytical results for the former issue. Another problem is
to consider the asymptotic cases of measurements in many copies. Due to the considerable
complications caused by POVMs and the seemingly intractable optimization involved, we
failed to obtain any analytical solutions, and numerical approach is required. We hope the
readers will be more successful.
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